Multidimensional Euler – Poincaré equations 1
نویسندگان
چکیده
Given a Lagrangian L : J 1 P → R, with P = M × G → M, invariant under the natural action of G on J 1 P, we deduce the analog of the Euler–Poincaré equations. The geometry of the reduced variational problem as well as its link with the Noether Theorem and an example are also given.
منابع مشابه
Subgroup Structure of the Poincaré Group P(1,4) and Symmetry Reduction of Five-Dimensional Equations of Mathematical Physics
Using the subgroup structure of the generalized Poincaré group P (1, 4), the symmetry reduction of the five-dimensional wave and Dirac equations and Euler–Lagrange– Born–Infeld, multidimensional Monge–Ampere, eikonal equations to differential equations with a smaller number of independent variables is done. Some classes of exact solutions of the investigated equations are constructed.
متن کامل. SG ] 1 5 Ju n 19 99 Discrete Lagrangian reduction , discrete Euler – Poincaré equations , and semidirect products
A discrete version of Lagrangian reduction is developed in the context of discrete time Lagrangian systems on G×G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. In this context the reduction of the discrete Euler–Lagrange equations is shown to lead to th...
متن کاملThe Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories
We study Euler–Poincaré systems (i.e., the Lagrangian analogue of LiePoisson Hamiltonian systems) defined on semidirect product Lie algebras. We first give a derivation of the Euler–Poincaré equations for a parameter dependent Lagrangian by using a variational principle of Lagrange d’Alembert type. Then we derive an abstract Kelvin-Noether theorem for these equations. We also explore their rela...
متن کاملm at h . N A ] 1 7 Se p 19 99 DISCRETE EULER - POINCARÉ AND LIE - POISSON EQUATIONS
In this paper, discrete analogues of Euler-Poincaré and Lie-Poisson reduction theory are developed for systems on finite dimensional Lie groups G with Lagrangians L : TG → R that are G-invariant. These discrete equations provide “reduced” numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G...
متن کاملThe Euler–Poincaré Equations in Geophysical Fluid Dynamics
Recent theoretical work has developed the Hamilton’s-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler–Poincaré equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d’Alembert type in which variat...
متن کامل